Correlated two-proton decay from ¹⁰C*

K. Mercurio,¹ R. J. Charity,¹ R. Shane,¹ L. G. Sobotka,¹ J. M. Elson,¹ M. Famiano,² A. Wuosmaa,²

A. Banu, C. Fu, L. Trache, R. E. Tribble, and A. M. Mukhamedzhanov

¹Washington University, St. Louis, Missouri 63130 ²Western Michigan University, Kalamazoo, Michigan 49008

Almost 50 years ago Goldansky [1] discussed the issue of correlated two-proton emission. Such decays can be reporters of initial-state correlations, much like α -decay informs us of the importance of α -clusters to the low-density energy-density functional [2]. No clear evidence of correlated two-proton (2p) emission was present in 1997 when Woods and Davids reviewed this subject [3]. Despite the recent flurry of activity near, at, and beyond the proton drip line, there is still no uncontested case of ¹S correlated 2p emission. The data on the known 2p cases indicate either sequential decay (e.g. ¹²O), nearly uniform sampling of the 3-body phase space (e.g. ⁶Be_{g.s.}, ¹⁶Ne, and ¹⁹Mg) or 3-body with definite, but not ¹S, correlated-2p component in the decay of a state at E* = 6.6 MeV in ¹⁰C. In contrast to this state, we show that a previously known state at E*=5.20 MeV and a previously unknown state at 8.4 MeV decay sequentially, while yet another at E*=5.30 MeV decays by uniformly sampling the 3-body phase space.

Last year, we presented a study of the continuum spectroscopy of 10 C [4]. The data from this (first) experiment provided only a weak suggestion of a 2p correlation in the decay of the state at 6.6 MeV. In the summer of 2007 we repeated this experiment, with an identical experimental set-up, but with 3 times the beam. This was achieved by using enriched Carborane (C₂[${}^{10}B_{10}$]H₁₂) as a source material for the primary ${}^{10}B$ beam. The primary beam impinged on a hydrogen gas cell held at a pressure of two atmospheres and kept at liquid-nitrogen temperature. The secondary beam of E/A=10.7 MeV 10 C, with intensity of 2×10⁵ s⁻¹, purity of 99.5%, an energy spread of 3%, and a spot size of 3.5x3.5 mm was produced with the MARS spectrometer. Both 14.1 mg/cm² Be and 13.4 mg/cm² C secondary targets were used.

The two, three and four-body correlations are shown in Fig. 1 as excitation energy spectra (by subtracting the Q-value from the center-of-mass energies.) In addition to the decay paths found in our previous work, a previously unobserved (broad) state at E*=8.4 MeV is found that decays to ⁹B(E*=2.36 MeV). For this report we focus on the correlations between the protons in the decay of both the 5.30 and 6.6 MeV states that 1) bypass the ⁹B_{g.s.} but 2) possess the 2 α correlation indicating that ⁸Be_{g.s} was an intermediate. The relative emission angle θ_{rel} between the two protons in the 2 α +2p center of mass and relative energy E_{rel} of the protons are shown in Fig. 2. What is most striking is the symmetry and lack of symmetry about θ_{rel} =90° for the data from the states at 5.30 and 6.6 MeV, respectively. While angular momentum will generate correlations between successively emitted particles, θ_{rel} distributions must remain symmetric about θ_{rel} =90°. The shapes of the E_{rel} distributions are also markedly different for the two cases. The distribution from the 5.30 MeV state is broad with only a weak enhancement at low energy, while the distribution for the 6.6 MeV state is strongly enhanced at low energy.

Figure 1. (Color online) Reconstructed excitation energies from two and 3body correlations (left, a-d) and 4-body correlations (right, e-i). Panels (c) and (d) exclude events with the ${}^{8}B_{g.s.}$ correlation. The p + ${}^{9}B_{g.s.}$ detection efficiency is included, with an internal axis, in panel f.

A number of simulations were performed to evaluate which processes contribute to these decays. The first simulation assumed a sequential two-proton decay passing through the wide $E^*=1.5$ MeV first excited state of ⁹B. In the second simulation, the 3-body phase space of the two protons and the ⁸Be_{g.s.} fragment is uniformly sampled. The results of these simulations are shown in Fig. 2. Both the sequential and 3-body simulations come close to reproducing the θ_{rel} and E_{rel} distributions from the 5.30 MeV state, although the 3-body simulation is somewhat better. On the other hand, for the 6.6 MeV state, neither simulation can reproduce either the asymmetry about 90° in θ_{rel} or the low-energy enhancement observed in the E_{rel} spectrum.

In order to break the symmetry about 90°, we included a 2p correlation, of the type originally imagined by Goldansky, but heretofore never observed. Both an R-matrix scheme, using an ¹S p-p phase shift for an imagined intermediate, and a Faddeev calculation, where the nuclear p-p scattering amplitude is dominated by the ²He resonance, largely reproduce the correlations found between the two protons from the decay of the 6.6 MeV state. It is possible that this is a rotational state built on a single-particle

structure well described as almost pure $(sd)^2$. (Two excited protons alone in the sd shell.) The analog is known in ¹⁰Be, but particle bound.

Figure 2. Energy (left) and angle (right) p-p correlations for the 5.30 (top) and 6.6 MeV (bottom) structures. The data are the combined data from the present and previous experiments. Simulations for decay uniformily spanning the full 3-body phase space (thick lines) and correlated 2p emission calculated using the R-matrix formalism (thin lines) are shown. The dotted lines are mixtures of 3-body and correlated (85:15 and 35:65 for the 5.30 and 6.6 MeV states, respectively.) The dashed line (b) is a Faddeev calculation.

[1] V.

- Nucl. Phys. 19, 482 (1960).
- [2] B. Friedman and V. Pandharipande, Nucl. Phys. A361, 502 (1981).
- [3] R. J. Woods and C. N. Davids, Annu. Rev. Nucl. Part. Sci. 47, 541 (1997).
- [4] R. J. Charity et al., Phys. Rev. C 75, 051304 (2007).

Goldansky,